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Abstract: Batch processes are often characterized by piecewise linear dynamics due to 

varying operating conditions. Multiphase and multimode modeling of batch processes 

is a common technique that offers insight into the process operation and improved 

online monitoring. However, existing monitoring methods have several drawbacks such 

as neglecting process dynamics, requiring separate treatment of transient behavior and 

relying on uniformity between batches. These challenges are addressed here by 

proposing a new strategy to construct a dynamic model for monitoring multimode and 

multiphase batch processes. A linear dynamic system partitions phases and describes 

local dynamic behavior before modes of operation are clustered based on the global 

differences between batches. Lastly, an expectation maximization algorithm for 

multibatch data in the same mode is applied to estimate phase parameters. Process 

monitoring results on a benchmark penicillin fermentation dataset suggest a significant 

improvement over previous methods. 

Keywords: batch process, multimode, multiphase, online monitoring, dynamics 

1.  Introduction 

Batch and semi-batch processes are a class of chemical and manufacturing processes 

carried out over a finite duration. They are widely used in modern industries such as 

pharmaceutical, food, biotechnology and semiconductors [1]. Monitoring batch 

processes is an important task to ensure safety, product quality and waste reduction. 

However, the variability within and between batches creates modeling complexities and 
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challenges for online monitoring. Multiphase batch processes are characterized by 

different stages of dynamic behavior that yield different process variable characteristics 

within each batch duration such as those shown for the penicillin fermentation process 

in Figure 1. The penicillin fermentation process is characterized by four distinct phases: 

(1) exponential or lag phase, (2) growth phase, (3) stationary phase and (4) death phase. 

Due to feedback control and inherent process characteristics, the process variables often 

exhibit strong temporal correlation. Therefore, the data collected over the duration of a 

batch is a series of nonstationary dynamic sequences [2, 3]. Since the root cause of 

phases in batches comes from varying process operations, all variables are considered 

to be synchronized in the evolution of phases.  

 In addition to variability within each batch, there is often considerable variance 

between batches due to varied initial conditions, inconsistent raw materials and uneven 

batch durations. It is generally possible to further characterize batch processes by the 

number and duration of intra-batch phases in each batch. In the rest of the article, 

batches with similar phase characteristics are considered to exhibit the same mode and 

a batch process that exhibits multiple modes is referred to as the multimode batch 

process. For example, the second phase in Figure 1 may be either exponential or 

logarithmic, depending on the feed component or other factors. Batches with the 

exponential trend in the second phase have a particular mode that is distinguished from 

those with a logarithmic second phase trend given the other phases are the same. The 

various modes in a multimode batch process with data-driven strategies are determined 
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by clustering a large number of batches based on similar phase characteristics. The 

multimode behavior results in considerable variability in process variable trajectories 

across various batches which in turn poses a significant challenge for online monitoring. 

In particular, obtaining an accurate model from first-principles knowledge is often 

difficult due to the aforementioned challenges. 

 With a vast amount of historical process data available, a number of data-driven 

monitoring techniques have been developed in the past two decades. In particular, 

multiway principal component analysis (MPCA) and multiway partial least squares 

(MPLS) are two widely used multivariate statistical analysis (MVA) algorithms for 

online monitoring of batch processes [4, 5]. However, these MVA techniques have 

significant practical limitations in that they require estimates of future data and treat the 

overall batch as a single phase. To address the multiphase aspects of batch processes, 

Lu et al. identify phases within a batch by clustering time-series data with similar 

characteristic features before applying PCA on each cluster [6]. However, this method 

is deficient when continuous transition patterns are severe. To improve monitoring for 

transition patterns a soft-transition multiple PCA method and an angle-based separation 

scheme were proposed [7, 8]. The partition results require temporal sorting which is 

accomplished through subjective rules in additional post-processing steps [9]. 

 To avoid phase rearrangement and guarantee temporal order of phases, a sequential 

phase segmentation approach was developed for multiphase batch processes in [9-12]. 

These methods sequentially compare the dissimilarity of adjacent time-slice matrices 
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to find the transition points of phases. Unfortunately, an underlying assumption made 

for the phase segmentation methods is that all batches have phase uniformity, i.e., the 

order and number of phases within each batch are invariant. This assumption is not 

necessarily true as operations can vary from batch to batch, in particular for operations 

requiring manual operator intervention. 

 Multimode modeling addresses variations between batches by clustering similar 

batches and treating each cluster as a mode of operation with high repeatability. 

Recently, a support vector data approach was used to address the multimode and 

multiphase variations in batch processes [13]. Alternatively, a strategy of concurrent 

phase partitioning and inter-mode statistical analysis was proposed with the assumption 

of known mode labels [14]. The concurrent strategy was developed further and a 

concurrent mode identification and phase division (CMIPD) method was proposed [15].  

If mode labels are unavailable, the CMIPD method uses the k-means clustering 

algorithm to identify the modes. 

 The phase partitioning and mode identification algorithms referred above use an 

important concept called time-slice matrix in order to model and monitor batch 

processes. Let us assume that there are  batches each with process 

variables where each variable of each batch is measured at  time 

instances under the assumption of the fixed batch duration. Then the three dimensional 

array of batch process data can be represented by the matrix . An element 

from ith batch, jth process variable and kth time sample is denoted by . The 

I ÎR J ÎR

1,2,...,k K=

I J K´ ´ÎX R

( ), ,i j kX
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time-slice matrix is the submatrix obtained by aggregating the values of all 

process variables from all batches at time instant k, 

 .  (1) 

 Similarly, a time-segment matrix is defined as the matrix 

obtained by concatenating the time-slice matrices from time instant  to 

.Mathematically, the time-segment matrix is 

   (2) 

A visual description of these matrices is provided in Figure 2. The majority of phase 

and mode identification algorithms rely on MVA of the time-slice and time-segment 

matrices.  

 It is worth mentioning that the raw batches are actually of different batch durations. 

When it is claimed that batch process data can be represented by a standard three 

dimensional array , the underlying assumption is that all batches with 

different lengths (  in Figure 2) have been aligned or synchronized into the same 

length. Commonly used techniques include interpolation, truncation, defining an 

indicator variable for resampling process variables, dynamic time warping (DTW) and 

correlation optimization warping (COW) [1, 16-21]. The drawbacks of these batch 

length equalization methods are well documented [22]. Specifically, interpolation can 

introduce incorrect information while truncation can result in the loss of useful 

information. The DTW and COW methods cannot be used for online monitoring 

because they require the complete batch lengths beforehand. In some applications, it is 

I J
k
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even difficult to find a suitable indicator variable to align with the other process 

variables of equal length. Above all, under batch alignment, the columns of time-slice 

or time segment matrices correspond to equal values of the alignment variable rather 

than equal elapsed time. This would corrupt the original dynamic correlations and 

change the original data distribution. Hence, these strategies may work when the 

uneven lengths are not severe. Methods without “equalizing” batches as a preprocessing 

step and instead directly learning models from the raw batch data with severe uneven 

batch durations have attracted more attention. Zhao et al. took batches with approximate 

durations as one mode/group. They analyzed the differences between the groups to 

extract between-group and within-group information for monitoring faults. However, it 

is not necessarily true to simply assume the duration is a unique factor determining the 

group whose batches have similar features [22]. Zhang et al. address the drawback of 

the regular time-slice data matrix by proposing a pseudo-time-slice matrix constructed 

using the k nearest neighbor (kNN) rule to search similar samples within a data window 

[15]. However, the employment of kNN requires training data to be saved for online 

monitoring. These algorithms have inherent limitations as they are primarily meant for 

independent and identically distributed (IID) data. They do not account for temporal 

correlations of each variable. 

 Previous experience with monitoring continuous systems indicates that ignoring 

temporal correlations - and hence the process dynamics - will yield inaccurate statistical 

models and result in an unacceptably large number of missed process fault alarms [23]. 



7 

 

To address the issue of dynamic modeling, dynamic PCA for online monitoring of batch 

processes was proposed [24]. Two-dimensional dynamic PCA and two-dimensional 

subspace identification were then developed to simultaneously consider the dynamics 

within a batch and across batches [25, 26]. Recently, a global linear state-space model 

that represents the evolution of states with subspace identification was developed for 

designing a model predictive controller (MPC) [27, 28]. However, these dynamic 

models are limited in their description of the multimode and multiphase behaviors. 

Particle filtering is another well-known estimation algorithm that has been extended to 

estimate the states of batch processes but it has not been applied for online monitoring 

of batch processes [29, 30]. 

 To solve these drawbacks, a novel linear dynamic system based mode identification 

and phase division (LDSMIPD) strategy is proposed in this article to deal with the issue 

of dynamic modeling and online monitoring with uneven length multimode and 

multiphase batch processes. A linear dynamic system (LDS) [31-33] is used to model 

each phase and a dissimilarity measure is designed based on LDS to partition different 

phases in a batch. LDS is a state-space model describing process dynamics and it can 

naturally deal with uneven-length data because LDS is a parametric model unlike MVA. 

A batch distance metric is then constructed to cluster similar batches into the same mode. 

The batch distance comprehensively takes phase features into consideration and can 

represent the difference in dynamics of two batches. The k-means clustering algorithm 

is employed to cluster the mode. Once the mode is determined, a modified expectation 
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maximization (EM) algorithm is applied on data from all batches in a given mode to 

estimate models for the corresponding phases. The difference between these phase 

models and the LDS models identified for phase partitioning is that the phase models 

are trained with multibatch data in an identical mode and can thus represent a wider 

range of operation than the model determined from a single batch of data. Finally, 

monitoring strategies are designed for multimode and multiphase batch process fault 

detection according to corresponding mode information and phase information. In the 

following section the proposed LDS phase partitioning strategy is described. 

Afterwards, the techniques employed for clustering batches into modes and re-

identifying the phase models are described in detail. A new online monitoring algorithm 

is then developed followed by a case study to validate our approach. Finally, some 

conclusions and recommendations are provided. 

 

Figure 1: Illustration of culture growth phase in penicillin fermentation with four 

phases. 
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Figure 2. A visual depiction of time-slice matrix and time-segment matrix. 

2. Sequential dynamic phase division 

A standard linear dynamic system is formulated as follows: 

   (3) 

where represents the vector of latent variables governing the process 

dynamics at time k,  denotes the vector of process variables also at time k. 

and  are the process noises and measurement noises, 

respectively. The noise sequences are assumed to be normally distributed with zero 

mean such that   and. The initial state  is also assumed to 

be normally distributed, i.e. . The unknown parameters of 

the LDS are combined into the parameter set   which are 

estimated with the EM algorithm [31, 34]. A stochastic subspace identification method 

is used to determine the choice of the hyper-parameters including the order of latent 

( ) ( ) ( )
( ) ( ) ( )
1k A k k

k C k k

+ = +

= +

t t w

x t v

( ) nk Ît R

( ) Jk Îx R

( ) nk Îw R ( ) Jk Îv R

( )( ) ( )0,p k Q=w N ( )0t

( )( ) ( ) ( )( )0 0 , 0p V=t µN

( ) ( ){ }0 , 0 , , , ,V A C Q RQ = µ
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variables and the initial values of the iterative EM optimization[35]. 

 Consider that for each batch, , there are  measured process 

variables, at time instances  where Ki denotes the duration of 

the corresponding batch. The data from each batch is represented using the set 

, . The proposed sequential dynamic phase division with 

LDS is based on the following observations. 

� LDS is a model that considers each batch of data as time series and as such it is not 

affected by the uneven batch durations unlike the standard MVA techniques which 

require extra cost and compromise to deal with the uneven batch duration problem.  

� LDS inherently has the capability to account for steady-state as well as dynamic 

features of the batch process unlike the standard MVA techniques.   

 

Figure 3. Illustration of phase segmentation 

 The phase segmentation process is applied on each batch data set. For each batch, 

the LDS corresponding to the first phase is identified by using an initial acceptable 

window of time. The data are deemed to be from a different phase if their predictability 

using the current model is unsatisfactory. As shown in Figure 3, samples that are 

1,2,...,i I= J

( )i Jk Îx R 1,2,..., ik K=

( ){ }i iX k= x 1,2,..., ik K=

1

J
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time direction 
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predicted accurately by the trained model belong to this specific phase, which is 

identified by the “white” time window. In contrast, the division between a predictable 

and an unpredictable sample serves as the starting point for the next phase. 

 Based on the illustration in Figure 3, the procedure for the dynamic phase division 

is as follows:  

Step1. Initialization. In the i-th batch the samples in a time window of length h used to 

identify the p-th phase are denoted as , , where 

 and is the starting point of the -th phase in the i-th batch run. 

The dataset  is pre-processed to have zero mean and unit standard deviation, i.e., 

, . 

Step 2. Model training. Train the LDS based on the i-th single batch data , given by 

  . (4) 

 Correspondingly, the set of parameters estimated in this case is given by  

. 

Step 3. Phase extension. A new phase is determined by detecting the time at which the 

model trained in the previous step is no longer able to adapt to samples, i.e., after 

. Generally, the distance between the true values,  and 

the predicted values  is used to determine whether the 

subsequent test samples correspond with the model. The details are as follows: 

 Step 3.1. Distance measurement for the next sample: The one-step ahead 

( ){ }i i
p pX k= x 1,2, ,k h= !

( ) ( )i i i
p pk k k= +x x i

pk p

i
pX

( ){ }i i
p pX k= x 1,2, ,k h= !

i
pX

( ) ( ) ( )
( ) ( ) ( )
( )( ) ( ) ( )( )

1
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 predicted marginal distribution associated with  and k is initialized as 

, denoted 

 .  (5) 

 Given Eq.(4), the predicted mean and covariance matrix are respectively expressed 

 as 

   (6) 

 and 

   (7) 

 where . Given that the predicted values of 

 process variables at  follow a multivariate Gaussian distribution, the 

 squared Mahalanobis distance of the true values  from the predicted means 

 can be given by 

   (8) 

 Here  is the squared Mahalanobis distance and can be regarded as a sum 

 of several unit Gaussians. Thus,  is subject to a distribution with J 

 degrees of freedom. The control limit is determined by the  distribution with 

 the confidence level , denoted . The implication of is that the 

 current model is not well-suited to describe the data. Note that the covariance 

 matrix  may be ill-conditioned due to the linear relation among variables. 

 The singular value decomposition (SVD) can be used to calculate pseudo-inverse 

 by eliminating the effect of very small singular values. Therefore, the degrees of 

( )ˆ ip kx

1h +
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( ) ( )( )1
Ti i i i i

p p p p pk C k C RS = G - +

( ) ( )( )1 1
Ti i i i i

p p p p pk A V k A QG - = - +

1k h= +

( )i
p kx

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 2~
Ti i i i i i

p p p p p pD k k k k k k Jc-= - -x z Σ x z

( )i
pD k

( )i
pD k 2c

2c

a Da ( )i
pD k Da>

( )i
p kS



13 

 

 freedom of the  distribution and the control limit should be determined by the 

 number of the remaining singular values, i.e., the values fairly larger than zero.  

 Step 3.2. Updating the one-step-ahead predicted distribution forward: By

 employing Kalman filtering, the non-steady state Kalman filter gain  can 

 be obtained from Step 2 as  

 .  (9) 

Hence, the update rules of the means and the covariance matrix with respect to 

the latent states  are given by 

   (10) 

 and 

 .  (11) 

 Once  and  are obtained they can be used to update the one-step 

 ahead predicted distributions  similar to 

 the Eqs.(5)~(7). 

 Step 3.3. Iterative distance evaluation: The distance between the true and predicted 

 samples is evaluated in an iterative fashion according to Steps 3.1 and 3.2. If three 

 consecutive samples exceed their control limits then the iterative procedure is 

 stopped. The first sample exceeding the control limit is regarded as the starting 

 point of the next phase and the entire procedure restarts at Step 1 to determine the 

 next phase. 

 The phase division procedure is illustrated in Figure 4 with each color denoting a 

2c

( )i
pK k

( ) ( )( ) ( )( )( ) 11 1
T Ti i i i i i i

p p p p p p pK k k C C k C R
-

= G - G - +

( )i
p kt
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different phase. Note that the number of phases per batch is not necessarily constant. 

For example, the phase number of the first batch in Figure 4 is more than that of the 

second batch. Moreover, the length of each phase can differ from batch to batch even if 

the batches have the same number of phases. In Figure 4 the length of the first phase in 

the second batch is longer than the first phase in the I-th batch. These phenomena can 

be understood from the practical perspective that to achieve adequate performance 

some batches require additional operations or extra time. For example, in fermentation 

processes the fermentation tank should be cooled to a preferred temperature by either 

adding cooling water or elongating the cooling duration which will either introduce 

additional operations or prolong the cooling stage. The proposed sequential phase 

division is therefore better at adapting to the complexities of practical applications than 

techniques that are constrained by assumptions of equal phase length or identical phase 

evolution.  

 

Figure 4. Illustration of phase division in different batches 

3. Mode clustering and phase re-identification 

The multiphase aspect of modeling describes the different operational stages along the 
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time direction whereas the multimode aspect of modeling accounts for the operational 

variations between batches, i.e., batch-wise dissimilarity. Batches within a mode are 

defined to have a close global characteristic (i.e., batch distance), which compares 

batches over their entire respective duration. In the remainder of this section the mode 

clustering and phase parameter re-identification strategies are described. For mode 

clustering a batch distance index is designed to describe the difference between batches. 

Then, the k-means algorithm clusters the various batches into modes based on the 

designed batch distance [36]. Finally, based on the clusters the phase parameters are re-

identified to homogenize the phase parameters for each mode. 

3.1. Batch distance and mode clustering 

 It is clear that batches containing a different total number of phases are particularly 

dissimilar and should be classified into different modes. For batches with a different 

total number of phases, the batch distance can be regarded as infinite. However, it is 

not always correct to assume that batches with an equal number of phases are similar. 

Parameters of phases in the same order may vary significantly between batches even 

though the total number of phases is equivalent. Therefore, for mode clustering the 

definition of batch distance is suitable for batches with an equal number of phases.  

 The batch distance between the i-th batch and the j-th batch, denoted as , is 

determined by the distances of corresponding phases in the same order, denoted as 

 where  is the phase number of each batch. An illustration of the 

,i jd

, , 1,2,...,i j i
pd p P= iP
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procedure for determining batch distance from the distances of corresponding phases is 

provided in Figure 5. It is clear from Figure 5 that any large variation between parallel 

phases will result in an obvious difference between batches. Therefore, the batch 

distance is determined by the maximum of the phase distances, i.e., 

 .  (12) 

 

 

Figure 5. Determination of batch distance from phase distances. 

Determination of the phase distance is based on the distribution of the phase data which 

is represented by the LDS after phase division. Two LDSs are considered equivalent 

when the following conditions are satisfied: 

 ,  (13) 

 ,  (14) 

and 

 ,  (15) 

where  is some nonsingular transformation matrix. Note that these conditions focus 

on the equivalence of process dynamics which are in part governed by the process 

noises (of covariance ) and the inner parameters( ) that describe the 

dynamic correlations of the process. Since each  is a real symmetric matrix it can 
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be written as  and thus Eq.(15) can be reduced to 

 .  (16) 

 An equivalent transformation of the two phases exists if one can find a nonsingular 

matrix  satisfying Eqs.(13), (14) and (16). The matrix  is determined by 

combining Eqs.(13) and (14) such that 

 .  (17) 

The extended coefficient matrix of can be truncated when they are full column rank. 

The estimate of T derived from Eq.(17) is denoted  whereas the estimate of T derived 

by combining Eqs.(13) and (16) such that 

   (18) 

is denoted . In Eq.(18) the extended coefficient matrix of  can be truncated 

when they are all full row rank. The phase distance is determined by comparing the 

estimate of T1 to the estimate of T2, i.e., if they are close the phases are considered 

equivalent. The distance between T1 and T2 is quantified by analyzing the distinction 

between eigenvalues of the two matrices via aligning the two matrices with the same 

eigenvectors [37]. The procedure for determining the phase distance is summarized as 

follows: 

� Calculate  and  and let . 
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� Calculate the eigenvalues  of . 

The dissimilarity of  and  is then evaluated as follows  

   (19) 

where  ranges from zero to one with a smaller value indicating more 

similarity between T1 and T2. Considering that  is a measurement of the 

distance between two LDSs, both of which have had their corresponding means (i.e., 

the set-points) removed. The phase distance should be determined by simultaneously 

considering the dissimilarity of dynamics and the difference between the set-points. 

Therefore, the phase distance  is given by 

   (20) 

where  and  are sample averages of the p-th phase in i-th batch and j-th batch, 

respectively. The parameter  regulates the weighting between the two terms of 

Eq.(20). In this paper an adaptive  is selected, i.e., 

   (21) 

such that both terms in Eq.(20) range from zero to one. From the definition of phase 

distance it is clear that a value of  close to zero indicates the two phases are 

sufficiently similar. Upon deriving the phase distance, the batch distance can be 

determined with Eq.(12) and used by the k-means clustering algorithm to cluster 

batches into several operating modes. 
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3.2. Phase parameter re-identification 

During the initial phase division procedure each model illustrating one specific phase 

is trained with data from a single batch. After mode clustering is accomplished, similar 

batches are classified into the same mode. From the definition of batch distance, each 

batch within a specific mode has the same number of phases in the same order. 

Therefore, for each mode there exists data from several batches that is available for 

estimating phase parameters. Phase parameter re-identification with data from multiple 

batches help refine model parameters and it can also help the re-identified model 

represent a wider range of external conditions since each batch is influenced by 

components like the distributions of initial latent states and the measurement noises. 

 The sequence of data contained in the p-th phase of the i-th batch within the m-th 

mode is denoted as , with  where  is the 

corresponding sequence length. Assuming there are  batches in the m-th mode, the 

multi-batch data used to re-identify the parameters for the p-th phase is denoted 

.The multi-batch data after pre-processing to ensure zero 

mean and unit standard deviation for each variable is denoted

. Please note that unlike in the phase division procedure, 

the sample means and variances are calculated by the overall mode dataset, , 

instead of using a single batch.  

 The EM algorithm is used to estimate the parameter set 

( ){ },m,i m i
p pX k= x ,1,2, , m i
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. The parameter set governs the following LDS 

for a specific phase in a mode: 

 .  (22) 

The latent variables corresponding to the process variables  are dentoted . The 

log likelihood function of the complete data is given by . Generally, 

each batch can be considered as an independent process with little influence from or on 

other batches. Therefore, the log likelihood function over the mode can be further 

divided into the sum of the log likelihood functions for each batch, yet governed by the 

same parameters, i.e.,   

 .  (23) 

With Eq.(22), Eq.(23) is further divided as follows  

 .  (24) 

The EM algorithm is a two-stage iterative optimization technique consisting of the E-

step and the M-step to determine the maximum likelihood solution.  

 In the E-step, with the estimated parameters  from the last iterative cycle, one 

can obtain the expectation of the log likelihood function from Eq.(24) associated with 

the posterior distribution of latent variables . Since batches in the same 
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mode are independent and identically distributed, the E-step can be applied to each 

individual batch. To estimate the expectation, the posterior distributions of latent 

variables, , are derived by Kalman filtering and Kalman smoothing, 

which are forward recursion and backward recursion, respectively. The posterior 

filtering distributions for each batch are given by 

   (25) 

where .The Kalman filtering gain, , for the 

p-th phase and the m-th mode is given by 

 .  (26) 

Initial values of the forward recursion in Eq.(25) are and . The posterior 

smoothing distribution associated with the latent variables of each batch is given by 

   (27) 

where . Initial values of this backward recursion for 

each batch are  and . Based on the 

posterior smoothing distributions, take the expectation of the log likelihood function in 

Eq.(24) results in the expectations of the following three statistics 

   (28) 
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   (29) 

   (30) 

where  is the expectation operator.  

 In the M-step, the expectation of the log likelihood function associated with the 

posterior distribution is maximized based on the results derived in the E-step. Unlike 

the E-step, the independent batches for each mode in the training data should be 

incorporated in the M-step to maximize the objective likelihood function over all 

batches in the same mode. The update procedure for the parameter set denoted in 

the M-step is given by the following set of equations: 

   (31) 
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Details for the above parameter updating formulas of the EM algorithm with multi-

batch data are provided in Appendix A. The maximum likelihood estimate is obtained 

by conducting the E-step and the M-step iteratively until convergence is achieved. This 

optimization procedure does not require an equal length for each batch even though 

multiple batches for a given mode are considered together during phase parameter re-

identification. The whole flow chart of process modeling described in Section 2 and 

Section 3 is shown in Figure 6. 

Figure 6. The flow chart of process modeling. 

4. Online monitoring 

Once the phase division, mode clustering and phase re-identification procedures are 

completed, a set of structured dynamic models are obtained to describe the phase 

evolution in a clustered mode. One purpose of creating these dynamic models is to be 

able to perform online monitoring over the entire duration of new batches. For a specific 

phase in a mode, the methods for determining the monitoring statistic and the control 

limit are the same as the procedures for sequential phase division in Section 2. Firstly, 

with the p-th phase in the m-th mode, the statistic used to monitor the current sample is 

Batch data normalization Partition each batch 
into several phases

Group batches with the 
same number of phases 

together

Calculate phase distance for 
corresponding phases in each 

two batches within groups 
(Eq.(20))

Calculate batch 
distance(Eq.(12)) within 

groups

Cluster batches into modes 
within groups using k-

means algorithm

Cluster batches into modes 
within groups using k-

means algorithm

Estimate LDS parameters 
for each phase within 

modes
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the squared Mahalanobis distance, constructed by the one-order ahead predicted 

distribution (Step 3.1 in Section 2). When  exceeds the control limit  with 

confidence , the new point is considered to be abnormal. The parameters of the 

predicted distribution are updated by Kalman filtering when the new sample is obtained 

(Step 3.2 in Section 2). Note that the calculation of  in online monitoring 

requires parameters in phase re-identification to substitute the parameters in phase 

division. 

There are two critical challenges in online monitoring for multimode and 

multiphase processes, i.e., mode selection and phase switching. Generally, the mode 

information is uncertain when a new batch begins since the sample size is too small to 

successfully determine the mode of the batch. In this work mode selection is performed 

with the voting principle. Firstly, the model in each mode is used to construct the 

Mahalanobis distance statistics,  where  is the mode 

number. The minimum statistic generates a vote for the corresponding mode. When the 

number of votes in one mode exceeds a predefined value  over other modes then the 

batch is considered to belong to the mode with the most votes. Subsequent samples are 

then monitored under the assumption that the batch belongs to this mode. 

Before the mode is determined, the statistic is conventionally selected as the 

minimum Mahalanobis distance over all modes. To determine phase switching, the 

monitoring procedure starts at the first phase in each mode. The switch in phases is 

detected when the distance statistics from six continuous samples with the current phase 
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model all exceed those calculated with the model from the subsequent phase. This phase 

switching condition indicates that the model for the next phase has a better prediction 

performance for the new samples than the model from the current phase. 

5. Case studies 

The Pensim benchmark for penicillin production in a fed-batch fermentor is applicable 

to a wide range of controller design and process monitoring challenges. Recently, an 

extensive reference data-set associated with the Pensim benchmark model has been 

developed for the purpose of process monitoring [38].Based on the existing Pensim 

model, this reference data-set carefully accounts for the following important factors: i) 

the variability across batches, ii) the type, magnitude and the onset time of a process 

upset and iii) the influence of measurement noise and process upsets on the process and 

the control system. Thus, the reference dataset is well suited to test and compare the 

efficacy of the proposed monitoring algorithm on multimode and multiphase batch 

processes. Specifically, the ten process variables that are listed in Table 1 are measured 

online and used to train the process models and perform online monitoring. Note that 

feed rate, one of the online measured variables, is discarded in this work because it 

starts at zero and tends to be a constant with a very small fluctuation, providing little 

dynamic information and potentially causing singularity problems in model building. 

The measurements are sampled every 0.2h and the running duration of a batch is 

approximately 460h with some variation due to uneven batch lengths. 
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5.1. Process modeling 

The multimode reference data-set is generated by using two types of micro-organisms 

when producing the data collected over a total of 300 batches. The distribution of batch 

lengths is shown as a histogram in Figure 7. To provide some insight into the multimode 

and multiphase behavior, trends of the dissolved oxygen (DO) concentration of the 

batches are plotted in Figure 8. From Figure 8 it can be seen that the trends are split 

primarily into two clusters and the DO concentration is not static as a function of time. 

Early stages of each batch display complex transient behaviors whereas the later stages 

tend to be relatively steady.  

Table 1. The description of process variables. 

No. Process variables 

1 Fermentation volume 

2 Dissolved oxygen concentration 

3 Dissolved CO2 concentration 

4 Reactor temperature 

5 pH 

6 Feed temperature 

7 Agitator power 

8 Cooling/heating medium flow rate 

9 Base flow rate 

10 Acid flow rate 
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Figure 7. Distribution of batches according to the length of each batch in samples  

 

8  

Figure 8. The trends of dissolved oxygen concentration. 

 

The phase division is performed with each batch and the length of the time window (h) 

to identify an LDS is set to be 100 samples. The specified window length is small 
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enough to describe phase specifics and large enough to obtain a satisfactory estimate 

for the parameters of an LDS accordingly. As shown in Figure 9, after phase division 

the total number of phases per batch are primarily distributed between 8 phases and 13 

phases. These normal batches can be initially classified into six modes temporarily 

according to their total number of phases. Figure 10 compares the duration of batches 

with a total of 8 phases (red circles) to the duration of batches with a total of 13 phases 

(blue stars). The increments in the horizontal axis in Figure 10 are distinct batches for 

a given total phase number. From Figure 10 it is clear that the total number of phases is 

somewhat independent of the batch duration, i.e., batches with a longer duration do not 

necessarily have more phases. Instead, the total number of phases is dependent upon 

the ability of a current phase to predict future samples, which ensures consistency of 

samples within the same phase.  

 

Figure 9. Distribution of batches according to total phase number 
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Figure 10. The lengths of batches with phase number 8 and 13. 

 Next, batches with the same phase number are clustered based on batch distance. 

Figure 11 shows the batch distances between the various batches with a total of 8 

different phases. It can be seen that the defined batch distance clearly indicates two 

classes, which are clustered by the k-means algorithm. This clustering result is 

consistent with the condition that the training data-set is generated with two types of 

micro-organisms. For batches with more than 8 phases, the clustering results are similar 

to those in Figure 11, i.e., batches with the same phase number are separated into two 

clusters. Therefore, the entire training data-set is separated into 12 modes. Since 

clustering ensures similar properties of batches in a given mode, phase re-identification 

is performed for each phase utilizing more batches. The EM algorithm developed to 

deal with the multi-batch data is used to re-estimate the parameters for each phase. 

Figure 12 shows the trend of the log likelihood function for the first mode in batches 

with a total of 8 phases. Iteration results in a monotonous increase in the value of the 



30 

 

log likelihood function until convergence is achieved.  

 

Figure 11. Batch distances between the various batches with a total of 8 different 

phases.  

 

Figure 12. Log likelihood values as the iteration increases gradually. 

5.2. Process monitoring 

The structured LDSs obtained after phase division, mode clustering and phase re-
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identification are used to carry out the online monitoring when a new batch begins. The 

extensive reference data-set provides a broad range of faults with a variety of fault types, 

fault magnitudes and fault onset times. Specifically, there are 12 types of process faults 

and each type has several different fault magnitudes to evaluate the sensitivity of the 

monitoring methods. Moreover, each kind of fault with a specific magnitude has 200 

different onset times when a process upset is triggered. Table 2 provides details of the 

various fault types and fault magnitudes. Taking the Fault 1 with a magnitude of -10% 

for example, the different onset time of this upset in 200 abnormal batches is plotted in 

Figure 13 which shows the fault onset time of the 200 faulty batches are uniformly 

distributed among four time ranges (i.e., 0-100h, 100h-200h, 200h-300h and 300h-

400h). The onset time of other fault scenarios with a specific magnitude has an 

approximately equivalent distribution to that shown in Figure 13.  

Table 2. Overview of fault types and magnitudes 

No. Fault descriptions and magnitudes 

Fault 1 Sudden change in feed substrate concentration (%) 

-10, -5, -2, -1, -0.5, 0.5, 1, 2, 5, 10 

Fault 2 Change in coolant temperature(°C) 

-2, -1, -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, 1, 2 

Fault 3 Gradual change of feed rate (saturating at 0.04/0.08L/h for 

negative/positive drifts) (%/h) 

-0.30, -0.15, -0.05, 0.05, 0.15, 0.30 

Fault 4 Gradual dissolved oxygen sensor drift (saturating at 0.2/2 for 
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negative/positive drifts) (%/h) 

-0.10, -0.05, -0.02, -0.01, -0.005, 0.005, 0.01, 0.02, 0.05, 0.10 

Fault 5 pH sensor drift (saturating at 2) (/h) 

0.001, 0.002, 0.003, 0.004, 0.005, 0.010, 0.015, 0.025 

Fault 6 Non-functional pH control (no acid or base flow for indicated duration) 

(h) 

 0.5, 1, 2, 5, 10, 20 

Fault 7 Reduced pH control (control action and maximal control action reduced 

by indicated fraction) (%) 

 -10, -20, -40, -60, -80, -90 

Fault 8 Reactor temperature sensor bias (°C) 

-0.50, -0.10, -0.05, 0.05, 0.10, 0.50 

Fault 9 Reactor temperature sensor drift (saturating at -5/+5°C for 

negative/positive drifts) (°C/h) 

 -0.10, -0.05, -0.01, -0.005, 0.005, 0.01, 0.05, 0.10 

Fault 

10 

Reduced temperature control (control action and maximal control action 

reduced by indicated fraction) (%) 

-5, -10, -20, -30, -40, -50 

Fault 

11 

Reduced temperature control (control action reduced by indicated 

fraction, maximal flow not impacted) (%) 

-10, -20, -30, -40, -50, -60 

Fault 

12 

Contamination (drift of substrate with -0.05/h to indicated level) 

-0.05, -0.10, -0.15, -0.20, -0.25 
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Figure 13. The abnormal onset time of these batches with respect to Fault 1 with 

magnitude -10% 

 In this paper, the newest state-of-the-art method, i.e., the CMIPD strategy based on 

time-slice matrices for monitoring multimode and multiphase batch processes with 

uneven durations is compared to the proposed LDSMIPD method. Note that the CMIPD 

is developed based on PCA so that the Hotelling  and squared prediction error (SPE) 

statistics can be designed. However, these two statistics are asymmetric. The  

statistic can capture the main process fluctuations which still obey the process 

correlation whereas the SPE statistic can detect the abnormalities that deviate from the 

normal process variable correlations. The SPE statistic is sensitive and suited to detect 

process faults [39, 40]. Since this work aims to monitor abnormal process behavior, the 

SPE statistic in CMIPD is compared with the proposed method because the statistic 

designed in this paper is a counterpart of the SPE statistic in CMIPD. In this application, 

CMIPD has divided the batches into eight phases and each phase is clustered into modes 

2T

2T
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according to differences in the direction of the principal component with respect to the 

time-slice matrix. The confidence level for setting the control limits in both the 

LDSMIPD and the CMIPD is set at 95%. Figure 14 compares the two methods for the 

training data (i.e., no faults). From Figure 14 it can be seen that both methods accurately 

monitor the majority of samples. The false alarm rates of CMIPD and LDSMIPD are 

2.7% and 4.3%, respectively, both of which are less than 5% under the confidence level 

of 95%. However, the CMIPD as a static strategy presents a sharp peak at around the 

250th sample where there exists a significant transient behavior according to Figure 8. 

By comparison, the dynamic model is smoother and provides a better fit of the transient 

stage.  

 

Figure 14. The monitoring for the normal case by two methods. 

 The performance for monitoring abnormal behavior is measured by fault detection 

rate (FDR), which is calculated by the ratio of the detected fault samples relative to the 

total number of fault samples. Using the second fault in Table 2 for example, the 
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qualitative analysis of observing the monitoring curves of the statistics in Figures 14 to 

19 is performed to intuitively demonstrate the performance of the proposed strategy. In 

Figures 14 to 19, the horizontal red line is the control limit for fault detection and the 

vertical red line is the true onset time of the fault. When these figures are plotted, the 

monitoring indices for all points are scaled by the control limit, i.e., / . Hence, 

the red line is always at 1 and correspondingly its log value is at 0. The normal case 

with five different magnitudes and onset times are tested with the second fault and the 

results are displayed in Figures 14 to 19. Together, these figures indicate that the two 

methods monitor the abnormal behavior well for a fault with a large absolute magnitude. 

However, the LDSMIPD displays a better performance in quickly capturing the 

incipient anomaly since the proposed method can react rapidly when the fault occurs. 

In comparison, the CMIPD method has an obvious detection delay. Similarly, Figure 

16 and Figure 18 also indicate that the LDSMIPD has a higher FDR when the fault 

magnitude is medium. For a fault with a small magnitude such as the case in Figure 17, 

both methods ignore this small fault under the current confidence level. The benefit of 

the dynamic method is that the dynamic model is closer to the true distribution for time 

series than the distribution derived by the static method which assumes the data is 

independent and identically distributed.   

( )m
pD k Da
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Figure 15. The comparison of LDSMIPD and CMIPD for Fault 2 with -2 magnitudes 

 

Figure 16. The comparison of LDSMIPD and CMIPD for Fault 2 with -0.5 

magnitudes 
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Figure 17. The comparison of LDSMIPD and CMIPD for Fault 2 with +0.1 

magnitudes 

 

Figure 18. The comparison of LDSMIPD and CMIPD for Fault 2 with +1 magnitudes 
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Figure 19. The comparison of LDSMIPD and CMIPD for Fault 2 with +2 magnitudes 

 

The FDRs for all fault scenarios are quantitatively summarized in Table 3 to evaluate 

the performance of online monitoring. Table 3 gives the average of FDRs of 200 batches 

for a specific type of fault with a specific magnitude. The fault magnitudes in Table 3 

for each fault are sequentially numbered as the order shown in Table 2. For example, 

the first fault contains ten different magnitudes so that they are numbered as 1-10 

whereas the third fault has six different magnitudes which are numbered as 1-6 in Table 

3. The numeric values in Table 3 are formatted such that the averaged FDR of 

LDSMIPD/CMIPD are presented for a convenient comparison with the bold cases 

indicating better performance for the LDSMIPD method. For example, 56/48 in Table 

3 means the FDR of the first method is 56% while the FDR of the second method is 

48%. Hence, Table 3 cannot only provide the detection rates of the two methods, it is 

also beneficial to give the intuition of the comparative performance of the two methods. 
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From this table, the overall monitoring performance is much better with the dynamic 

LDSMIPD technique than the static CMIPD method as evident by the higher FDR with 

LDSMIPD. Moreover, for the faults with very small magnitudes such as magnitudes 3-

8 for the first fault, magnitudes 4-7 for the second fault and the first magnitude for the 

seventh fault, the FDR of CMIPD is almost still under 5%. Therefore, these scenarios 

will be misjudged as normal operation since the confidence level of the fault detection 

is set to be 95%. For some faults with medium or large magnitudes, LDSMIPD has a 

significant performance improvement such as the second magnitude of the fifth fault 

and magnitudes 3-5 of the seventh fault.  

Table 3. The averaged FDRs for each type of fault with different magnitudes 

(format: FDR of LDSMIPD/ FDR of CMIPD  unit: %) 

No. of 

Magnitude 

1 2 3 4 5 6 7 8 9 10 

Fault 1 56/48 45/19 13/5 13/4 14/4 12/4 13/4 16/6 48/31 67/80 

Fault 2 94/95 59/74 41/19 9/5 9/4 9/4 11/6 51/34 85/90 99/96 

Fault 3 62/64 59/52 55/31 45/37 56/63 67/77 -- -- -- -- 

Fault 4 97/96 94/92 86/86 74/75 59/56 63/56 73/75 85/86 94/93 97/95 

Fault 5 10/4 58/10 74/30 81/50 87/64 96/91 98/97 99/99 -- -- 

Fault 6 6/4 6/4 7/4 8/6 9/10 57/19 -- -- -- -- 

Fault 7 9/3 16/3 37/3 70/4 78/8 86/42 -- -- -- -- 

Fault 8 49/22 7/5 6/4 6/4 7/5 55/36 -- -- -- -- 

Fault 9 99/97 97/95 68/67 50/43 66/53 81/72 98/95 99/97 -- -- 
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Fault 10 6/4 7/4 14/5 71/41 78/48 92/88 -- -- -- -- 

Fault 11 7/4 12/5 18/6 63/23 81/48 93/88 -- -- -- -- 

Fault 12 16/7 20/22 50/33 55/46 58/52 -- -- -- -- -- 

 

6. Conclusions 

In this article, an LDS is used as a basic model for the batch process. The LDS is 

selected for its ability to fit the distribution of the stochastic dynamic system in a hidden 

Markov fashion, so that the sequential LDSs are well-suited for modeling multiphase 

dynamic processes and monitoring the process deviations. Moreover, unlike other MVA 

techniques, the proposed modeling procedure does not require an equal batch length 

because the LDS is a structured parametric model. Additionally, the multimode 

behavior is determined by evaluating the distance between batches. The proposed 

method is applied to a standard fermentation benchmark and compared to a static model. 

The detailed analyses of the dynamic model are illustrated and the results indicate a 

significant performance improvement with regards to monitoring the fermentation 

batch process used as a benchmark. 
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Appendix A. The derivations of EM algorithm dealing with multibatch data 

Given the three expected statistics (28)~(30) obtained in E-step, the parameters in LDS 

need to be updated in the M-step. The maximum likelihood function has been given in 

Eq.(24). First, the maximum likelihood function with respect to and  is 

   (37) 

Taking the expectation of Eq.(37) with , then there is 

   (38)

where  is the trace of one matrix. By maximizing the above  with 

respect to and , i.e., setting the derivative of to be zero, the 

updated parameters can be calculated by Eqs.(31) and (32).   

Similarly, from Eq.(24), the maximum likelihood function with respect to and  
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   (39) 

Taking the expectation of  and there is  

  (40) 

By setting the derivative of to be zero, the updated parameters of  and 

 can be calculated by Eqs.(33) and (34).   

 

Finally, the maximum likelihood function with respect to and  is given by 

   (41) 
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  (42) 

Setting the derivative of  to be zero, the updated parameters of and  

are given by Eqs.(35) and (36).   
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RESPONSE TO REVIEWERS 

EDITORIAL REQUIREMENTS: 

Q1. Move Figure 18 from the reference section. 

A1. It has been moved. 

--Figure 2 is not cited in the manuscript text. 

A2. Figure 2 has been cited.  

--Is permission needed to publish Table 2? 

A3. Table 2 is from the Ref [38] that provides the simulated dataset. We think Table 2 

with proper citation is allowed to present in this paper. 

--Please add a Table of Contents graphic to the last page of the paper (instructions 

above). 

A4. See the last page.  

--References must be according to ACS guidelines--the name of the work cited should 

be listed. 

A5. Yes, they have been added. 

--------------- 

Reviewer(s)' Comments to Author: 

 

Reviewer: 1 

Comments to the Author 

In this manuscript, a linear dynamic system based mode identification and phase 
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division strategy is proposed to solve the process monitoring problem in multiphase and 

multimode batch processes with uneven batch durations. The performance of the 

proposed method is illustrated using a simulation process based on Penism fermentation. 

The idea in this manuscript may have some novelty. However, the motivation of this 

study is unclear and the description of the methodology is quite confused. In the 

following, I will present some comments for which I found particularly concern. 

 

Q1. The format of the cited literature should be double checked. 

A1. The format of the cited references has been revised to meet the requirements of the 

journal. 

 

Q2. In Page 20, “mode clustering and phase re-identification procedures are complete” 

should be revised as “mode clustering and phase re-identification procedures are 

completed”. Please check other part of the article to avoid grammar mistakes. 

A2. Thanks for pointing out the mistake. The whole paper has been double-checked to 

avoid these typos. See Line 429 on Page 23. 

 

Q3. In Page 12, the authors mentioned Steps 3.1 and 3.2, but I cannot found these in 

the article. The authors should check their manuscript carefully to avoid similar 

mistakes. 

A3. Thanks for this comment. These notes were missing in the first submission with 
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Latex.  They have been added. Please see these modifications on Page 11-13. 

 

Q4. In the abstract, the authors claim that “Batch processes are often characterized by 

non-linear dynamics and varying operating conditions”. Since the batch processes are 

generally non-linear, why do the authors develop monitoring model using linear 

dynamic system? 

A4. We apologize for such a confusing statement about nonlinear dynamics in batch 

processes. Because the operating conditions vary, there are often 

multiphases/multistages in the batch process that produces a target product. In a lot of 

applications, the operation at each stage usually can be treated as a steady-state behavior, 

so each phase can be characterized as linear dynamics. Therefore, from the viewpoint 

of the whole batch, batch processes are often characterized by non-linear dynamics. To 

avoid this confusion, we think the phrase “piecewise linear dynamics” should be used 

to replace “non-linear dynamics”. Please see Line 1-2 on Page 1. 

 

Q5. In the introduction, the authors claim that “Although there have been numerous 

studies to address uneven batch durations they generally are based on assumptions that 

are difficult to satisfy in practice”. However, I think the examples the authors provided 

are not sufficient for this statement. Hence, I suggest that the author spend more space 

to introduce the monitoring strategies for uneven batch processes. 

A5. Yes. The methods of dealing with uneven batch durations can be divided into two 
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classes. One uses an indirect way to align or synchronize uneven-length batches through 

some preprocessing procedures, such as interpolation, truncation, dynamic time 

warping, and so on. In the introduction, we focus more on the indirect methods. Also, 

there are other methods that can directly deal with the uneven length issue. Regarding 

the direct methods, more relevant explanations have been given as the reviewer 

suggested. The modifications are made as follows: 

 What is worth mentioning is that there often exist the raw batches with different 

durations.  When it is claimed that batch process data can be represented by a standard 

three-dimensional array  , the underlying assumption is that all the batches 

with different lengths (  in Figure 2) have been aligned or synchronized into the 

same length. Commonly used techniques include interpolation, truncation, defining an 

indicator variable for resampling process variables, dynamic time warping (DTW) and 

correlation optimization warping (COW) [1, 16-21]. The drawbacks of these batch 

length equalization methods are well documented [22]. Specifically, interpolation can 

introduce incorrect information while truncation can result in the loss of useful 

information. The DTW and COW methods cannot be used for online monitoring 

because they require complete batch lengths beforehand. In some applications, it is even 

difficult to find a suitable indicator variable to align with the other process variables of 

equal length. Furthermore, under batch alignment, the columns of time-slice or time 

segment matrices correspond to the equal value of the alignment variable rather than 

the equal elapsed time. This would corrupt the original dynamic correlations and change 

I J K´ ´ÎX R
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the original data distribution. Hence, these strategies may work when the uneven 

lengths are not severe. Without “equalizing” batches as a preprocessing step, directly 

learning models from the raw batch data with severe uneven batch durations has 

attracted more attention. Zhao et al. took the batches with approximate durations as one 

mode/group. They analyzed the differences between the groups to extract between-

group and within-group information for fault monitoring. However, it is not necessarily 

true to simply assume that the duration is a unique factor determining the group whose 

batches have similar features [22]. Zhang et al. address the drawback of the regular 

time-slice data matrix by proposing a pseudo-time-slice matrix constructed using the k 

nearest neighbor (kNN) rule to search similar samples within a data window [15]. 

However, the employment of kNN requires training data to be saved for online 

monitoring. These algorithms have inherent limitations as they are primarily meant for 

independent and identically distributed (IID) data. They do not account for temporal 

correlations of each variable. 

See Line 94-122 on Page 5-6. 

 

Q6. In Page 7, I do not agree with the statement that “Linear dynamic system(LDS) is 

a model that is built using a small section of the time series data from each batch and 

as such it is not affected by the uneven batch durations unlike the standard multivariate 

statistical analysis (MVA) techniques”. According to the “Iterative distance evaluation” 

in Page 12, the proposed method also divides the multiphase process into different 
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phases and then develops model for each phase. Besides, the MVA technique can also 

develop monitoring model using part of the data in a phase. 

A6. Yes. We agree with this opinion. Both LDS and MVA can use part of the data in 

one phase to develop monitoring models. We think our statement in the original 

manuscript caused confusion. What is expected to present in the sentence is that LDS 

is able to naturally learn the dynamic model without considering or compromising batch 

durations. LDS is a parametric dynamic model that describes the time series. Hence, 

the LDS is trained using the batch data along the time direction. Take two batches in 

Fig.1 for example. The objective of maximizing the log-likelihood is given by 

   

where  has  samples and  has  samples.  is the parameter set of 

LDS. The log-likelihood function of multi-batch data can be decomposed into the sum 

of the log-likelihood function of each individual batch in which the data are regarded 

as time series like a continuous process. Hence, LDS can naturally learn process 

dynamics no matter how long the batch duration is.  

 

 

Figure. 1 The time direction for LDS 
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 MVA mostly needs to analyze the statistical models in each time instance. Hence, 

MVA actually constructs statistical models along the batch direction. Because of uneven 

durations in different batches, MVA has to take extra costs to deal with the uneven 

duration issue, which has been reviewed in A5. The corresponding modification refers 

to Line 182-184 on Page 10. 

 

Figure 2. The batch direction for MVA 

Q7. What is the training data of Eq. (4), the historical data of a single batch or the 

historical data of all the batches? 

A7. Eq.(4) is trained with a single batch data for dividing the phase of this batch. To 

avoid confusion, this point has been emphasized in the revised manuscript. See Line 

203 on Page 11. 

 

Q8. In Eq. (8), the authors assume that statistic D follows chi square distribution. For 

monitoring strategies based on PCA and PLS, the extracted features are mutually 

orthogonal. Hence, these features are assumed to be independent. However, the 

variables in a real industrial process are generally related with each other, and the 

independence assumption is difficult to be satisfied. Therefore, I suggest the authors 

Time direction
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use kernel density estimation to calculate the control limit of statistic D. 

A8. Eq.(8) is , where 

 is a covariance matrix. With SVD, . 

 is a unitary matrix with mutually orthogonal columns so that the original 

variables are now rotated into orthogonal coordinates. Moreover, by multiplying 

, the variables in the new coordinate system are all with unit variances. Hence, 

Eq.(8) is the sum of J unit Gaussians and it is still subjected to . The related 

statement has been revised to avoid confusion. See Line 226-228 on Page 12. 

 

Q9. The methodology part of this article is quite confused. A flow chart of the proposed 

method may help the readers to better understand the proposed method. 

A9. We are sorry to cause confusion in the methodology. The whole methodology 

procedure can be briefly summarized as follows. 

a. Perform the sequential phase division for every single batch. The LDS model is used 

to judge the phase switching point. 

b. Design the batch distance by comprehensively considering the phase features in each 

batch. The batch distance is used to measure the difference between two batches. And 

the k-means clustering is employed to group the similar batches as a mode. 

c. Re-train LDS models for each phase using all the batch data in the same mode.  

d. Design monitoring metrics and strategies for fault detection. 
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To avoid confusion, we made some proper modifications in the Introduction Section 

to clarify the motivations and enhance the organization of the paper. See Line 136-153 

on Page 7.  

 

As the reviewer suggested, the flow chart of the modeling training procedures is 

presented in Figure 3 as follows. See Figure 6 in the updated manuscript. 

Figure 3. The flow chart of the methodology 

 

Q10.  In Penism fermentation process, the number of variables is 14. Why the author 

select these ten variables to do experiment. 

A10. In the fed-batch penicillin fermentation process, 14 process variables are often 

used. However, this paper adopts the extensive dataset provided by “Van Impe, J. and 

G. Gins, An extensive reference dataset for fault detection and identification in batch 

processes. Chemometrics and Intelligent Laboratory Systems, 2015. 148: p. 20-31”, in 

which 11 process variables were measured online. We also copied the variable table 

here. Note that the feed rate variable is discarded in our paper. The feed rate at the start 

is zero and then it tends to be a constant with a very small fluctuation, so it is likely to 

cause singularity problems in model building. The trend of the feed rate in the normal 

Batch data normalization Partition each batch 
into several phases

Group batches with the 
same number of phases 

together

Calculate phase distance for 
corresponding phases in each 

two batches within groups 
(Eq.(20))

Calculate batch 
distance(Eq.(12)) within 

groups

Cluster batches into modes 
within groups using k-

means algorithm

Cluster batches into modes 
within groups using k-

means algorithm

Estimate LDS parameters 
for each phase within 

modes
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condition is presented in Figure 4. That is why 10 variables are selected in this paper. 

To avoid confusion, this supplementary statement has been added (Line 470-473 on 

Page 25). 

 

 

 

Figure 4. The trend of the feed rate. 

Q11. In Figure 13, why the control limits of different phases are the same? 

A11. Since the following squared Mahalanobis distance is used as the monitoring 

statistic, 
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the control limit  is determined by the degree of freedom J (i.e., the variable 

number) and the confidence level . Thus, it is right that all the points in different 

phases have the same control limit. In addition, all the monitoring statistics are scaled 

by the control limit in monitoring figures; i.e., the points in these monitoring figures 

(Figure 14-19 in the revised manuscript) are given by / , which indicates 

anomaly when it exceeds 1. That is why the control limit in the figures is always 1. To 

avoid confusion, the relevant illustrations have been added (Line 579-581 on Page 35). 

 

Q12.  In Table 3, the accurate detection rates of these two methods should also be 

provided. 

A12. In Table 3, we use the format “FDR of LDSMIPD/ FDR of CMIPD” to present 

the results. For example, 56/48 means FDR of the first method is 56% while FDR of 

the second method is 48%.  Table 3 can not only provide the detection rates of the two 

methods but also benefit readers by intuitively comparing the performance of the two 

methods. Hence, we think Table 3 has provided the detection rates the reviewer 

expected. To avoid misunderstanding, the explanations have been added to the 

manuscript. See Line 615-618 on Page 38. 

 

Q13.  Since the authors develop the LDSMIPD method to solve the drawbacks of the 

MVA methods, some MVA method should also be adopted to make a comparison. 
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A13.  Yes. MVA has been widely applied to batch process modeling and monitoring. 

However, there are very few studies on multimode and multiphase batch processes with 

the uneven batch duration issue. The comparative method we chose in this work is 

CMIPD “Zhang, S., C. Zhao, and F. Gao, Two-directional concurrent strategy of mode 

identification and sequential phase division for multimode and multiphase batch 

process monitoring with uneven lengths. Chemical Engineering Science, 2018.”, which 

is the newest method dealing with the same problem as ours. The core of CMIPD is 

principal component analysis (PCA) for building phase models, so it is a typical MVA 

method. We think this comparison is fair and representative enough and can reflect the 

merits of our method. See Line 549-551 on Page 33. 

 

Reviewer: 2 

Comments to the Author 

Main contributions of this manuscript to is as follows : 

(1) Proposing a novel linear dynamic system based mode identification and phase 

division to deal with the issue of dynamic modeling and online monitoring with uneven 

length multimode and multiphase batch processes. 

(2) Identifying different phases using a dissimilarity measure for linear dynamic 

systems to model each phase. 

(3) Constructing a multimode model is using a model distance metric to cluster batches 

with similar phases. 
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(4) Estimating phase parameters by expectation maximization algorithm.. 

It is a challenging task to monitor multimode and multiphase batch processes. This 

manuscript is interesting and can be considered for a possible publication after a minor 

revision. The main questions are listed as follows. 

Q1. What is “KI” in Figure 2. Why is it marked here? 

A1. In practical batch processes, different batches certainly have different durations. 

Hence, KI represents the I-th batch length different from the aligned length K in Figure 

2. See Line 177-179 on Page 10. 

 

Q2. “Ki3” should be corrected into “K3i” in Figure 3. 

A2. Thank you for pointing out this typo. It has been changed. See Figure 3 on Page 10. 

 

Q3. How to deal with the problem that different variable has different phase length. 

A3. This problem is interesting. In view of practical process operations, the phase refers 

to a specific operation stage whose process characteristic varies a lot from the previous 

stage, i.e. phase change can be briefly understood as operation switching. The problem 

that different variables have different phase lengths is generally not severe in batch 

processes, so the phases in literature are defined as the sequential data subjected to a 

unified multivariate model or distribution instead of considering those variables 

separately. This is also the reason why we do not consider this problem in our work. 

 Regarding the problem the reviewer mentioned, some studies on continuous 
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processes may be promising and helpful (Das L, Rengaswamy R, Srinivasan B. Data 

mining and control loop performance assessment: The multivariate case[J]. AIChE 

Journal, 2017, 63(8): 3311-3328.) The strategies generally segment sequential data for 

each variable and then concatenate these changing points from all the variables.  

To avoid confusion, we added the relevant explanations to show all variables are 

considered to be synchronized in the evolution of phases. See Line 28-30 on Page 2. 

 

Reviewer: 3 

Comments to the Author 

This is an interesting contribution related to monitoring in batch processes, but needs 

to improved before being accepted for publication. 

 

Q1. Batch processes (at least in chemical engineering) are inherently nonlinear. Why 

are linear dynamic systems being used to model each phase, and why is the dissimilarity 

measure used to identify phase specific to linear systems? For the case study 

(benchmark data set) considered, this may not be an issue, but this does not seem to be 

a reasonable assumption for the general batch problem. 

A1. We apologize for such a confusing statement about nonlinear dynamics in batch 

processes. As the operating conditions vary, there are often multiphases/multistages in 

the batch process that produces a target product. In a lot of applications, the operation 

in a stage usually can be treated as a steady-state behavior so that each phase can be 
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characterized as linear dynamics. Therefore, from the viewpoint of the whole batch, 

batch processes are often characterized by non-linear dynamics. We think the phrase 

“piecewise linear dynamics” should replace “non-linear dynamics” to avoid confusion. 

Please see Line 1-2 on Page 1. 

 

Q2. Also, were alternatives to the EM algorithm considered for the identification of the 

dynamic model?  

A2. Sure. Subspace identification is a matrix projection and decomposition method as 

an alternative to the EM algorithm with the Bayesian method. See Line 129-131 on 

Page 7 and Ref.[27] Corbett B, Mhaskar P. Subspace identification for data-driven 

modeling and quality control of batch processes[J]. AIChE Journal, 2016, 62(5): 1581-

1601. 

 

Q3. I fail to understand the distinction (if there is any) between the notion of ‘phase’ 

and ‘mode’ used in the manuscript. Phases have been characterized as different stages 

of dynamic behavior that yield different process variable characteristics. The authors 

state that batches with similar phase characteristics are considered to exhibit the same 

mode and a batch process that exhibits multiple modes is referred to as the multimode 

batch process. This appears to indicate that the existence of a specific phase (a distinct 

dynamic signature) is what is used to classify a batch into a mode. Does this imply that 

any batch with more than one phase would necessarily exhibit multiple modes? Also, 
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is there an assumption that batches with equal number of phases have the phases 

appearing in the same sequence? 

A3. Let us take the fermentation process in the following figure for example. To achieve 

the final target, one batch needs to go through several different but indispensable stages, 

known as phases. However, in some phases, the operations can be adjusted slightly 

according to practical situations. For example, the second phase in Figure 4 may be 

exponential or log, determined by the component of feed or other factors. Batches with 

the exponential trend in the second phase can be taken as the same mode distinguished 

from the others with the log trend in the second phase. Hence, the difference between 

the phase and the mode can be summarized as: 

 

A phase is about the varying process along the time direction and it is an inner property 

of one single batch. The mode represents the differences from batch to batch. The 

difference between the modes is caused by inconsistent operations at some specific 

stages.  

 

Therefore, we think it is correct to say that that a specific phase (a distinct dynamic 

signature) is used to classify a batch into a mode. But one batch can just belong to one 

mode. And it is also right that the batches with the equal number of phases have the 

phases appearing in the same sequence because a good batch operation generally 

follows a fixed operation procedure with good repeatability. To avoid confusion, these 
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explanations have been supplemented (Line 37-40 on Page 2). 

 

Figure 4. Illustration of 4 culture growth phases in penicillin fermentation 

 

Q4. It is entirely possible that the grouping of batches into modes can result in only one 

batch belonging to a particular mode. In this case, I_m=1. Are there any issues for 

determining Xbar^m_p in this case? 

A4. Sure. Mathematically, it is likely to group several batches into a particular mode. 

In this case, this batch is generally considered as an outlier batch. However, it does not 

make sense to use the mode with only one batch to construct a monitoring model. Our 

method is better as it works for the mode that only contains one batch because the linear 

dynamic system (LDS) uses time series to construct the model. Data in one batch are 

certainly time series like continuous processes. Actually, in the phase division (Section 

2), the model is trained based on one single batch data. See Section 2. 

   

Q5. On page 10, the explanation of how the degrees of freedom of the chi-square 

distribution and the control limit are determined (‘by the number of remaining singular 
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values’) can be explained more clearly. 

A5. Eq.(8) is , where

 is a covariance matrix and J is the number of variables. With SVD, 

.  is a unitary matrix with mutually 

orthogonal columns so that the original variables can now be rotated into orthogonal 

coordinates. Moreover, by multiplying , all the variables in the new coordinate 

system have unit variances. Eq.(8) is the sum of J unit Gaussians and it is subjected to 

. If all the singular values in  are significantly larger than zero, it means 

no significant linear relationship exists in the variables, so the degree of the freedom is 

J. Otherwise, one should first delete the components with the singular values close to 

zero to avoid the singularity. The singular values larger than zero constitute the 

“remaining singular values”, which represents the degree of freedom of the chi-square 

distribution. See Line 226-228 and Line 233-235 on Page 12-13. 

 

Q6. In the section on dynamic phase segmentation, there are mysterious references to 

‘Step 1’, ‘Step 2’ and ‘Steps 3.1 and 3.2’. Given that there is no numbering of steps in 

the procedure, this makes the algorithm hard to follow, especially for iterative distance 

evaluation. 

A6. Thanks for this comment. Those notes were missing in the first submission with 

Latex. Now they have been added. Please see these modifications on Page 11-13. 
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