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Abstract: In this paper, the authors have proposed an ensemble Kalman filter based stochastic 

model predictive control algorithm to determine an optimal control policy at every sampling time 

instant for a constrained stochastic linear system. To determine an optimal control policy for the 

constrained linear system affected by random disturbances and measurements corrupted by 

random noise, the authors have minimized the uncertain objective function, subject to uncertain 

state & output constraints and deterministic input constraints using the quantile based scenario 

analysis approach. In this work, ensemble Kalman filter is being employed, to generate a recursive 

estimate of states of the constrained stochastic linear system. The number of scenarios is considered 

to be equivalent to that of number of sample points used in the ensemble Kalman filter. Each 

scenario is viewed as one realization of the process noise, measurement noise over the prediction 

horizon as well as the ith sample point of the state estimate at the beginning of the prediction 

horizon generated by the ensemble Kalman filter. Simulation studies have been carried out to assess 

the efficacy of the proposed control scheme on the simulated model of the constrained single-

input and single-output linear stochastic system. 

Keywords: Ensemble Kalman filter, Stochastic Model Predictive Control, Scenario Optimization 

and quantile scenario analysis. 

 

1. INTRODUCTION 

Model Predictive Control (MPC) is the most preferred 

multivariable control scheme at the supervisory level 

in the process industries because of its ability to 

handle systematically the multivariable interactions and 

constraints such as states, outputs, and inputs 

respectively. At each sampling time instant, the MPC 

computes the current and future controller outputs, 

by minimizing the predicted deviation of the process 

output from the setpoint over the prediction horizon 

as well as minimizing the expenditure of the control 

effort in driving the process output to the setpoint 

subject to the deterministic constraints in states, inputs, 

and outputs (Qin and Badgwell, 2003). It should be 

noted that only the current value of the controller 

output is applied to the plant and the whole procedure 

is repeated at the next sampling time instant. The 

aforementioned deterministic MPC formulation hasn’t 

taken into account the model uncertainty, 

measurement uncertainty and probabilistic state and 

output constraints (Mesbah, 2016). 

 

Depending upon the type of state space model used for 

prediction, the MPC can be broadly classified into 

deterministic MPC and stochastic MPC. The second 

type classification is based on the type of uncertainty 

and the uncertainty propagation methods (Monte Carlo 

simulation, Moment method and Polynomial Chaos) 

being used in the stochastic MPC formulation 

(Stochastic tube based SMPC; Scenario/Sample based 

SMPC and Generalized Polynomial Chaos based 

SMPC). Further SMPC schemes are classified also 

based on the control input parameterization (either 

open loop control or pre-stabilizing feedback control)  

and the  type  of  objective  function, constraints and 

constrained optimization algorithm being employed to 

numerically solve the constrained optimization 

problem to obtain the current and future control 

outputs. It may be also noted that the robust model 

predictive control scheme (the min-max approach 

described in Scokaert and Mayne, 1998, the tube-based 

MPC in Mayne et al. 2014) will handle only 

deterministic description of plant uncertainties 

whereas stochastic MPC can systematically handle 
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probabilistic description of uncertainties (multi-stage 

or a scenario based NMPC approach in Lucia et al., 

2013, Bavdekar and Mesbah, 2016). Tube-based MPC 

for linear systems and nonlinear systems has been 

proposed as an alternative to min–max approaches 

based robust MPC. Even though tube based MPC can 

guarantee stability and satisfy constraints, it does not 

address the issue of optimal performance in the 

presence of uncertainties (Mayne et al. 2014). 

 

Several  review articles have appeared which 

comprehensively survey the theoretical developments and 

industrial practices in the area of model predictive control 

(Qin and Badgwell 2003; Forbes et al. 2015). In recent 

years, the concept of stochastic MPC (Mesbah et al. 2014; 

Mesbah, 2016) has attracted the attention of several 

researchers and has been applied in many different areas, 

such as building climate control, power generation and 

distribution, chemical processes etc. Mesbah et al. 2016, 

while discussing future research directions in his review 

article on stochastic MPC, stressed that most SMPC 

approaches are developed under the assumption of full 

state feedback. Unfortunately, all states are not available 

for measurement in many situations. Hence, SMPC 

algorithms that include state estimation remain an open 

problem for stochastic systems. It should be noted that the 

state estimator based MPC formulations, which use 

extended Kalman filter (Ricker 1990; Subramanian et al. 

2015), derivative free Kalman filter (Prakash et al. 2010), 

and particle filter (Sehr & Bitmead, 2017) have been 

reported in the process control literature. 

 

An important contribution of this paper is the 

development of a state estimator based stochastic 

model predictive control algorithm to determine an 

optimal control policy for a constrained stochastic 

linear system. In order to determine an optimal control 

policy for the system affected by random disturbances 

and measurements corrupted by random noise, the 

authors have minimized the uncertain objective 

function, subject to uncertain constraints such as 

states and outputs as well as deterministic input 

constraints using the quantile-based scenario analysis 

(QSA) approach proposed by Zamar et al. 2017. The 

advantages of the QSA approach for stochastic 

optimization over the mean-based based stochastic 

optimization approach are outlined in Zamar et al. 

2017. 

 

It should be noted that the QSA approach minimizes a 

weighted average of the quantiles of the objective and 

constraint distributions. Hence, it will be much more 

robust than simply minimizing the corresponding 

expected values of the objective and constraint 

distributions, as it is typically done in all Stochastic 

Model Predictive Control formulations. 

 

 

The organization of the paper is as follows: Section 2 

presents the ensemble Kalman filter algorithm. Section 

4 reports the algorithm for the determination of an 

optimal control policy for the stochastic linear system. 

Simulation studies have been reported in section 4 

followed by concluding remarks in section 5. 

 

2. ENSEMBLE KALMAN FILTER ALGORITHM 

Let us assume that the stochastic linear system is 

represented using the state and measurement equations 

given below: 

𝐱(k) = 𝚽𝐱(k − 1) + 𝚪u𝐮(k − 1) + 𝚪d𝐝(k − 1) + 𝐰(k)

𝐲(k) = 𝐂𝐱(k) + 𝐯(k)
}(1) 

where 𝐱(k)ϵRn are the state variables, 𝐮(k)ϵRu are the 

manipulated inputs, 𝐝(k)ϵRd are the disturbance 

variables and 𝐲(k)ϵRy are the measured output 

variables. It is assumed that the state and measurement 

equations are affected by additive process noise and 

measurement noise, respectively as shown in equation 

1. The system matrices (i.e. 𝚽, 𝚪u, 𝚪d  and 𝐂 ) and the 

distribution of process noise {𝐰(k)} and measurement 

noise {𝐯(k)} are assumed to be known in this work. The 

determination of the optimal state estimates using an 

ensemble Kalman filter algorithm is as follows. 

 

The ensemble Kalman filter (EnKF) is initialized by 

drawing N samples {𝐱̂(i)(0|0): i = 1, … N} from a 

suitable initial state distribution(𝐩[𝐱(0)]). At each time 

step, N samples {𝐰(i)(k), 𝐯(i)(k): i = 1, … N} for 

{𝐰(k)} and {𝐯(k)} are drawn randomly using the 

distribution of process noise and measurement noise 

respectively. The computation of the optimal state 

estimates using an EnKF is as follows: 

𝐱̂(i)(k|k − 1) = [𝚽𝐱̂(i)(k − 1|k − 1) + 𝚪u𝐮(k − 1) +

                               𝐰(i)(k)] (2) 

These transformed particles are then used to estimate 

the sample mean and sample covariance as follows: 

𝐱̅(k|k − 1) =
1

N
∑ 𝐱̂(i)(k|k − 1)

N

i=1

                                 (3) 

𝐲̅(k|k − 1) =
1

N
∑[𝐂𝐱̂(i)(k|k − 1) + 𝐯(i)(k)]

N

i=1

          (4) 

𝐏ε,e(k|k − 1) 

=
1

N − 1
∑[𝛆(i)(k|k − 1)][𝛆(i)(k|k − 1)]

T
N

i=1

(5) 

𝐏e,e(k|k − 1) 

=
1

N − 1
∑[𝐞(i)(k|k − 1)][𝐞(i)(k|k − 1)]

T
N

i=1

 (6) 

where, 

𝛆(i)(k|k − 1) = 𝐱̂(i)(k|k − 1) − 𝐱̅(k|k − 1) (7) 

𝐞(i)(k|k − 1)  

= [𝐂𝐱̂(i)(k|k − 1) + 𝐯(i)(k)] − 𝐲̅(k|k − 1)  (8) 

The Kalman gain and updated sample points are then 

computed as follows: 



𝐋(k|k − 1) = 𝐏ε,e(k|k − 1)[𝐏e,e(k|k − 1)]
−1

 (9) 

𝚼(i)(k|k − 1) = 𝐲(k) + 𝐯(i)(k) − 𝐂𝐱̂(i)(k|k − 1) (10) 

𝐱̂(i)(k|k)  

= 𝐱̂(i)(k|k − 1) + 𝐋(k|k − 1)𝚼(i)(k|k − 1)  (11) 

𝚼(i)(k|k) = 𝐲(k) − 𝐂𝐱̂(i)(k|k) (12) 

The accuracy of the estimates depends on the number 

of sample point (N). Evensen (2003) has indicated that 

sample points between 50 and 100 suffices even for 

large dimensional systems. 

 

3. EnKF BASED STOCHATIC MODEL 

PREDICTIVE CONTROLLER 

The determination of an optimal control policy for the 

stochastic linear system using the proposed ensemble 

Kalman filter based stochastic linear model predictive 

control scheme (EnKF - SMPC)  is as follows: 

Given the future set point trajectory 𝐲sp(k + j|k), (j =

1 … P), the proposed EnKF - SMPC will determine the 

current and future controller outputs 𝐔f =

{𝐮(k|k) … 𝐮(k + 1|k) … 𝐮(k + M − 1|k)} in two stages 

using QSA approach: 

 Stage-1: Compute the current and future 

controller outputs 𝐔f
(i)

 for each scenario by 

minimizing the predicted deviation of the 

process output from the setpoint over the 

prediction horizon as well as minimizing the 

expenditure of control effort in driving the 

process output to setpoint subject to constraints 

such as states, outputs as well as inputs.  

 Stage-2: Determine a single feasible control 

policy 𝐔f, by minimizing the mean of the 

objective function distribution subject to 

satisfying the mean of the constraint 

distribution. 

The detailed computation procedure in each stage is as 

follows: 

Stage-1: There are three sources of uncertainties that 

arise while performing predictions, they are (a) 

uncertainty in initial state at the beginning of the 

prediction {𝐱̂(i)(k|k)∀i = 1, … N} and (b) unmeasured 

random disturbances {𝐰(i)(k + j|k)∀j = 1, … P} that 

may occur in future and that affects the state equation 

and (c) the unmeasured random output disturbances 

{𝐯(i)(k + j|k)∀j = 1, … P} that may occur in future and 

that affects the measurement model. In this work, the 

number of scenarios is considered to be equivalent to 

that of number of sample points (N) used in the 

ensemble Kalman filter. Each scenario is viewed as one 

realization of the process noise 𝐖(i) = {𝐰(i)(k + 1|k) 

𝐰(i)(k + 2|k) … 𝐰(i)(k + P|k)}, measurement noise 

𝐕(i) = {𝐯(i)(k + 1|k) 𝐯(i)(k + 2|k) … 𝐯(i)(k + P|k)} over 

the prediction horizon (P) as well as the ith sample point 

of the state estimate at the beginning of the prediction 

horizon generated by the ensemble Kalman filter 

{𝐱̂(i)(k|k)}. 

For each scenario, the following performance measure 

is minimized 

𝐉 =  
min

𝐔f
(i)  [∑‖𝐞f

(i)
(k + j|k)‖

𝐖E

2
P

j=1

  

+ ∑‖Δ𝐮(i)(k + j|k)‖
𝐖∆u

2
M−1

j=0

] (13) 

subject to the following constraints: 

𝐱̂(i)(k + j + 1|k) = [𝚽𝐱̂(i)(k + j|k) + 𝚪u𝐮(i)(k + j|k)

+  𝐰(i)(k + j + 1|k) 

            +𝐋(k)𝛈e
(i)

(k + j + 1|k)] ∀ j = 0,1 … P − 1  (14) 

𝐲̂(i)(k + j + 1|k) = [𝐂𝐱̂(i)(k + j + 1|k)

+ 𝐯(i)(k + j + 1|k) 

                     +𝛈d
(i)(k + j + 1|k)]∀j = 0,1 … P − 1  (15) 

𝐮(i)(k + j|k) = 𝐮(i)(k + M − 1) 
 ∀j = M, M + 1 … P − 1 (16) 

𝐱L ≤ 𝐱̂(i)(k + j|k) ≤ 𝐱H            ∀ j = 1 … P (17) 

𝐲L ≤ 𝐲̂(i)(k + j|k) ≤ 𝐲H           ∀ j = 1 … P (18) 

𝐮L ≤ 𝐮(i)(k + j|k) ≤ 𝐮H          ∀ j = 0 … M − 1 (19) 

Δ𝐮L ≤ Δ𝐮(i)(k + j|k) ≤ Δ𝐮H   ∀ j = 0 … M − 1 (20) 

where 

𝐞f
(i)(k + j|k) = 𝐲sp(k + j|k) − 𝐲̂(i)(k + j|k) 

 ∀ j = 1 … P (21) 

Δ𝐮(i)(k + j|k) = 𝐮(i)(k + j|k) − 𝐮(i)(k + j − 1|k)  
                                                       ∀ j = 0 … M − 1 (22) 

The filtered innovation signals are computed as 

follows: 

𝛈e
(i)(k + j + 1|k) = 𝛈e

(i)
(k + j|k)

𝛈e
(i)(k|k) = 𝛄f

(i)
(k|k − 1)

} ∀ j = 0,1 … P − 1 (23) 

𝛈d
(i)(k + j + 1|k) = 𝛈d

(i)
(k + j|k)

𝛈d
(i)(k|k) = 𝛄f

(i)
(k|k)

} ∀ j = 0,1 … P − 1 (24) 

𝛄f
(i)(k|k − 1) = [𝚽x𝚼f

(i)(k − 1|k − 2) + 

                                          [𝐈 − 𝚽x]  𝚼(i)(k|k − 1)] (25) 

𝛄f
(i)(k|k) = [𝚽𝑦𝚼f

(i)(k − 1|k − 1) 

+[𝐈 − 𝚽𝑦]𝚼(i)(k|k)](26) 

 

It may be noted that 𝛄f
(i)(k|k − 1) and 𝛄f

(i)
(k|k) are 

filtered values of innovation signals 𝚼(i)(k|k − 1) and 

𝚼(i)(k|k), respectively, which are defined by equation 

(10) and equation (12). The 𝚽x and 𝚽𝑦  matrices are 

parameterized as follows, 

𝚽x = diag{α1 α2 … αy} and 𝚽y = diag{β1 β2 … βy} 

where 0 ≤ αi ≤ 1 and 0 ≤ βi ≤ 1 ∀ i = 1,2, … y can be 

chosen to shape the response of the stochastic model 

predictive controller in the presence of unmeasured 

disturbance. Equation (16) states that no future control 

moves are planned beyond the control horizon of M 

steps. 

Stage-2: The QSA method developed by Zamar et al. 

(2017), is used to find a single, feasible, and robust 

control policy. That is, each scenario solution  

𝐔f
(i)

 is evaluated across all sampled scenarios as shown 

below. 



for i:1:N 

{ 

     for j:1:N 

     { 

          𝐡(i,j) = 𝐉(𝐔f
(i)

, {𝐖(j), 𝐕(j), 𝐱̂(j)(k|k)}) 

          for r:1:m 

          { 

               𝐂(i,j,r) = 𝚿r(𝐔f
(i)

, {𝐖(j), 𝐕(j), 𝐱̂(j)(k|k)}) 

          } 

     } 

} 

Here, 𝚿r(. ) represents the probabilistic constraints. 

Next, the cumulative distribution functions (CDF) of 

the objective function (𝐅
𝐔f

(i)(z)) and constraints 

(𝐆
𝐔f

(i)
,r

(ζ)) of each solution are obtained as follows, 

for i:1:N 

{ 

𝐅
𝐔f

(i)(z) =
1

N
∑ 𝐈(𝐡(i,j) ≤ z)

N

j=1

 

     for r:1:m 

     { 

𝐆
𝐔f

(i)
,r

(ζ) =
1

N
∑ 𝐈(𝐂(i,j,r) ≤ ζ)

N

j=1

 

     } 

} 

Subsequently, the optimal values of the current and 

future controller outputs are computed by solving the 

following coordination model. 

𝐔f = i ϵ 𝐈
argmin

∫ 𝐅
𝐔f

(i)
−1 (t)𝛀0(t)dt

1

0

    𝐈 = [1,2, … N]       (27) 

subject to 

∫ 𝐆
𝐔f

(i)
,r

−1 (t)𝛀r(t)dt

1

0

 ≤  𝛄r  rϵR                                    (28) 

The above formulation of the problem attempts to 

minimize the weighted average of the quantiles of the 

objective function, subject to satisfying a weighted 

average of the quantiles of the constraint performance 

functions, also called a risk spectrum (Zamar et al. 

(2017)). 𝛀0(t) & 𝛀r(t) are positive weighting functions 

that integrate to unity over the range 0-1. In the present 

work all quantiles have been given equal weights. 

The desired closed loop performance of the proposed 

SMPC scheme can be achieved by appropriately 

selecting the prediction horizon P, control horizon M, 

the error weighting matrix (𝐖E) input weighting 

matrix(𝐖Δu) and other parameters. Further, the SMPC 

scheme is implemented in a receding horizon 

framework. That is, only the current controller output 

𝐮(k|k) is implemented on the plant and the constrained 

optimization problem is reformulated at the next 

sampling instant based on the updated information from 

the plant. 

4. SIMULATION STUDY 

The efficacy of the proposed control scheme has been 

validated on the constrained single-input and single-

output linear system given by 

𝐱(k + 1) = 0.5𝐱(k) + 𝐮(k) + d(k) +  𝐰(k)  
𝐲(k) = 𝐱(k) + 𝐯(k); −2 ≤ 𝐮 ≤ 2; −1 ≤ 𝐱 ≤ 1 

TABLE 1. PARAMETER ASSOCIATED WITH 

EnKF and MPC 

Parameter Value Parameter Value 

R 0.001 Q 0.01 

No. of 

Scenarios 
200 

𝚽x & 

𝚽y 
0 

P(0|0) 0.01 x̂(0|0) 0.5 

P 10 M 1 

𝐰E 1000 𝐰∆u 1000 

𝚪𝑢  1 𝚪d 1 

The random disturbances {𝐰(k)} and measurement 

noise {𝐯(k)}are assumed to be zero mean Gaussian 

white noise sequences with covariance matrices Q & R 

respectively. The disturbance term 𝐝(k) is assumed to 

deterministic in this work. It is assumed that the system 

is controllable and also observable. The servo-

regulatory performance of the system with the proposed 

EnKF-SMPC and EnKF-min-max MPC in the presence 

of model-plant mismatch (MPM), which is 50 % 

increase in the system matrix (𝚽) are reported in Fig. 

1. The controller computations, however, are based on 

the nominal model parameters. The parameters 

associated with the EnKF and MPC are reported in 

Table 1. The evolution of true and estimated state 

variables of the system with EnKF-SMPC is reported in 

Fig. 2. It can be inferred from Fig.2 that the EnKF is 

able to generate fairly accurate filtered estimate of the 

state variable. The evolution of controller outputs is 

reported in Fig.3. 

The inferences drawn from the simulation studies are as 

follows: 

 It may be noted that both control schemes 

approached the desired setpoint, as shown in 

Fig. 1, during the discrete time interval 

between 1 and 49. This part of the simulation 

demonstrates the ability to transfer the system 

from the initial state 𝐱(0) = 0.5 to the desired 

setpoint (i.e. the origin). 

 A step change disturbance (d) of magnitude 0.5 

is introduced at discrete time instant 50 and 

both schemes are able to reject the disturbance. 

As a result, the output reaches the setpoint, as 

shown in Fig. 1, during the discrete time 

interval between 50 and 99. 

 With the disturbance being persistent, a step 

change in the setpoint of magnitude 0.8 (See 

Fig. 1) is introduced at the 100th sampling 

instant. Both schemes are able to maintain the 

output at the desired setpoint, as evident from 

Fig.1, during the discrete time interval between 

100 and 300.  



 
Fig.1. Servo-Regulatory Response of a Stochastic  

Linear System with EnKF-SMPC and EnKF based 

min-max based MPC 

The performance of the proposed control scheme has 

been assessed through stochastic simulation studies. A 

simulation run consisting of NTR= 25 trials with the 

length of each simulation trail, L, being equal to 300 is 

conducted. The sum of squared output error (SSOE), 

defined 

SSOE = ∑ [(𝐲sp(k) − 𝐲(k))
2

]L
k=1  is used as a 

performance index, where 𝐲sp(k) denotes the setpoint 

at time step k. Statistics of SSOE computed for each 

simulation run is used to assess the efficacy of the 

control scheme. The mean and standard deviation of 

SSOE values based on the NTR = 25 trials for EnKF-

SMPC and EnKF-min-max MPC are reported in Table 

2. As expected, the state estimates generated by EnKF 

are found to be biased after the introduction of step 

change in the unmeasured disturbance at discrete time 

instant 50 (Fig.2). It should be noted that even if the 

states are biased the proposed EnKF-SMPC scheme and 

EnKF-min-max MPC scheme are able to achieve offset 

free servo-regulatory performance.  From Table 2, it 

can be inferred that the average SSOE is found to be 

less for the proposed control scheme. The results of a t-

test comparing the mean difference in SSOE between 

the two control schemes revealed that EnKF-SMPC 

obtained a statistically significant improvement in the 

SSOE compared to that of the EnKF-min-max MPC. 

The improvement is estimated to be 0.1518 with a 

standard error of 0.0477. 

 

The efficacy of the proposed control scheme has been 

also validated on the constrained single-input and 

single-output linear system with non-negative 

constraints on process noise as shown below: 

𝐱(k + 1) = 0.5𝐱(k) + 𝐮(k) + |𝐰(k)|  
The servo-regulatory performance of the linear system 

in the presence of non-negative constraints on the 

process noise is reported in Fig. 4. It can be inferred 

from Fig.4, that the EnKF-SMPC is able to reject the 

non-negative random disturbances (Fig.5b) and achieve 

offset-free servo-regulatory performance. The 

evolution of controller output is shown in Fig.5a.  

Fig.2. EnKF-SMPC: Evolution of true and estimated 

state variable using EnKF 

 
Fig.3. Evolution of Controller Outputs 

TABLE 2. AVERAGE SSOE VALUES FOR 25 

TRIALS 

Control Scheme 
SSOE in the Presence of 

Model Plant Mismatch 

EnKF – MPC 3.1713 (0.0668) 

EnKF-Min – Max MPC 3.3220 (0.2291) 

 

5. CONCLUSIONS 

The quantile based scenarios analysis (QSA) approach 

was used to determine an optimal control policy for a 

constrained stochastic linear system in an elegant 

manner. Monte Carlo simulation analyses found that 

the proposed ensemble Kalman filter based stochastic 

model predictive control scheme, EnKF, can reject step 

like disturbances by bringing the process variable back 

to the setpoint and exhibits offset free performance. The 

average SSOE of the proposed control scheme was 

found to be less compared to the min-max MPC scheme 

in the presence of model-plant mismatch. It should be 

noted that, both EnKF schemes were able to generate 

accurate state estimates. Since, the EnKF-SMPC 

obtained a statistically significant improvement in the 

SSOE, compared to that of the EnKF-min-max MPC in 

the presence of mode-plant mismatch, its performance 

can be considered to be efficient. It should be noted that 

with the help of parallel computing, it is possible to 
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reduce the computational time of the control scheme 

proposed in this work. Further work is in progress to 

extend the proposed control scheme for a stochastic 

non-linear system in the presence of probabilistic state 

constraints. 

 
Fig.4. Servo-Regulatory Response of a Stochastic Linear 

System with EnKF-SMPC in the presence of non-

negative constraints on the process noise 

 
Fig.5. Evolution of Controller Output (EnKF-SMPC) 

& non-negative Random Disturbance 
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